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Abstract

Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under
the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane
mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material.
Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field
intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic
inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on
the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor
(DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When
the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the
range of M. < M < M, the propagation of the crack possibly brings about the branch phenomena in magnetoelec-
troelastic media.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Fibrous and laminated composites made of piezoelectric—piezomagnetic materials exhibit magnetoelec-
tric effect that is not present in single-phase piezoelectric or piezomagnetic materials, and have found
increasingly wide engineering applications, particularly in the aerospace and automotive industries. Numer-
ous investigators have carried out studies on the properties of piezoelectric/piezomagnetic composites in
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recent years (see e.g., Nan, 1994; Huang et al., 2000; Li, 2000; Pan, 2001; Wang and Shen, 2002; Wang and
Zhong, 2003). In particular, the damage tolerance and reliability for the composites have been matters of
concern, and there is a growing interest among researchers in solving fracture mechanic problems in media
possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects, this is, magnetoelectroelastic
effects. Recently, Liu et al. (2001) investigated magnetoelectroelastic materials involving a cavity or a crack
by including the electric field effects. Gao et al. (2003) presented an exact treatment on the crack problems
in a magnetoelectroelastic solid subjected to far-field loadings. Song and Sih (2003) analyzed the crack ini-
tiation behavior in magnetoelectroelastic composite under in-plane deformation. The anti-plane crack
problems in magnetoelectroelastic materials have been considered by Spyropoulos et al. (2003) and Wang
and Mai (2004). To the best of the authors’ knowledge, the problem of a moving crack in magnetoelectro-
elastic materials has not been resolved.

The objective of this paper is to seek the solution to the Yoffe-type moving crack problem in a magneto-
electroelastic material under anti-plane mechanical shear and in-plane electrical and magnetic loadings.
Fourier transforms are used to reduce the problem to the solution of dual integral equations. The solution
of the dual integral equations is then expressed analytically. Closed-form expressions for crack-tip fields
and field intensity factors are obtained. The results indicate that the crack moving velocity will exert a
significant effect on the crack-tip fields.

2. Basic equations for magnetoelectroelastic media

We consider a linear magnetoelectroelastic solid and denote the rectangular coordinates of a point by
x{j=1,2,3). Dynamic equilibrium equations are given as
azu,-
Gz/,i+ﬁ:P¥7 Dij—f.=0, Bi,—fu=0, (1)

where ¢;;, D; and B; are components of stress, electrical displacement and magnetic induction, respectively;
/> fe and f,, are the body force, electric charge density and electric current density, respectively; p is the mass
density of the magnetoelectroelastic material; a comma followed by i(i = 1,2,3) denotes partial differenti-
ation with respect to the coordinate x;, and the usual summation convention over repeated indices is
applied. Constitutive equations can be written as

ij = Cijkstrs — €sijEs — hjH s,
Di = CiksCs + /lisEs + ﬁisHsa (2)
Bi == hiksgks + BisEs + yisH.w

where &, E; and H, are components of strain, electric field and magnetic field, respectively; ¢, €iks» fiks
and f,, are elastic, piezoelectric, piezomagnetic and electromagnetic constants, respectively; A, and vy;, are
dielectric permittivities and magnetic permeabilities, respectively. The following reciprocal symmetries
hold:

Cijks = Cjiks = Cijsk = Chksij;  €sij = Esjis

_ _ _, _ (3)
hij = hyi, ﬁz'j = ﬁjia Lij = Ajiy Vi = Vii-
Gradient equations are
1
&y = E(Mf,j +u), Ei=-¢; Hi=-¢, (4)

where u; is the displacement vector, ¢ and @are electric potential and magnetic potential, respectively.
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For a special case of a transversely isotropic magnetoelectroelastic medium with x5 as a symmetry axis,
the constitutive equations (2) take the form as follows (Pan, 2001):

011 ey ocpp ez 0 0 0 é11
022 cp e c3 0 0 0 &2
033 c3 c3 ez 0 0 0 £33
on| |0 0 0 cu 0 0|2,
031 0 0 0 0 ¢y O 2631
012 0 0 0 0 0 ces 2¢1,
0 0 ey 0 0 hy
R P E
3 3
Lo e o [1E) o as oo [IT) (5)
Es Hs
eis O 0 his 0 0
0O 0 0 0 0 0
én
D, 0 0 0 0 e5 0)] ® o0 0\ /E
Dy|=[0 0 0 e 0 0 2883; o oo || E
D; es; ey ez 0 0 0 0 0 I E;
231
2¢e1,
Bu 0 O H,
+1 0 By 0 H, |, (6)
0 0 Py H;
&1l
B, 0 0 0 0 ms 0\|™ By 0 0\ [E
B|=]0 0 0 ms 0 0 2:3; +lo g, 0 ||E
B, by hy ks O 00 0 0 By \E
2¢3
2e1p

11 0 0 H]
+1 0 s O Hy |, (7)
0 0 933/ \Hs

where cgs = (11 — ¢12)/2. The governing equations simplify considerably if we consider only the out-of-
plane displacement, the in-plane electric fields and in-plane magnetic fields, i.e.,

Uy =u = 07 Uz = W(x>y)a (8)
El = Ex(xay)a E2 = Ey(xay)a E3 = 07 (9)

H,=H.(x,y), H,=H,(x,y), H;=0. (10)
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In this case, if there is no body force, electric charge density and electric current density, the governing
equations (1) simplify to

*w

cuVw+ eisV2h + hisVip = PW7
eisVew — 41 Vi — B, Ve =0, (11)
hlsvzw - ﬁ11vz¢ - ”/nvz(l) =0,

where V2 = % + aay—zz is the two-dimensional Laplace operator in the variables x and y, and the constitutive
relations (2), (5)—(7) become

ow

ow

Oz C44 €is his oy Ox C44 €15 his o
99 o

Dy = €15 —/111 —ﬁ” a y D)C = €15 —}41 —ﬁ” % . (12)
a.

B, his =B = = By his —Bu = &

Introducing two new functions ¢ and ¥ as

P=¢+m-w, Y=0+n w, (13)
where
his — — Anh
m:/ﬂﬂl 15 /112915’ :ﬁn@ls 11215' (14)
1711 *,Bu /111"/11 7[311

Eq. (11) become

1 &
VZW:E?;V’ V2h =0, V¥ =0, (15)
where
C\/Ev u:C44+V”e%5+A“h%5_%B”e”h”, (16)
p Auvn — B

and C, p and p are the speed of the magnetoelectroelastic shear wave, the magnetoelectroelastic constant,
and the material density, respectively.

3. Problem statement and method of solution

Consider a Griffith crack of length 2¢ moving at constant speed v in an infinite magnetoelectroelastic
material, which is subjected to far-field mechanical, electrical and magnetic loads as shown in Fig. 1. This
type of crack is the so-called Yoffe-type moving crack (Yoffe, 1951; Chen and Yu, 1997; Chen et al., 1998;
Hou et al., 2001; Kwon and Lee, 2001, 2003; Kwon et al., 2002; Kwon, 2004).

For convenience, let a coordinate system (x, y, z) be attached to the moving crack and when ¢ = 0 it coin-
cides with the fixed coordinate system (X, Y, Z). Since the problem is in a steady state, the Galilean trans-
formation can be introduced, i.e.

x=X—-uv, y=Y, z=7Z (17)
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Fig. 1. A crack moving in magnetoelectroelastic material under far-field mechanical, electrical and magnetic loads.

With reference to the moving coordinates system, Eq. (15) become independent of the time variable ¢ and
may be rewritten as

kazw(x,y) i aZW(an’) —0 Vz@( )=0 VZW( )=0 (18)
Ox? 0y? =Y 5y =Y HY) =1
where
k=1-(v/C). (19)

The poled magnetoelectroelastic medium is thick enough in the z-direction to allow a state of anti-plane
shear, and the crack is situated along the plane (—c < x <¢, y = 0). Due to the assumed symmetry in geo-
metry and loading, it is sufficient to consider the problem for 0 < x < oo, 0 < y < oo only.

We will consider the boundary conditions at infinity as

0. =Py, Dy=Dy, B,=B; (xX'+) — o0). (20)

Fourier transforms are applied to Eq. (18), and by using the conditions in Eq. (13), the results can be
obtained as follows:

wey) =2 / " A(8) exp(—VEEy) cos(£x) dE + any, (21)
Plxy) =2 / " [B(&) exp(~ ) — mA(E) exp(—VEEy)] cos(éx) d + by, (22)
o) =2 [ " [C(&) exp(— ) — nA(E) exp(—VEEY)] cos(Ex) dE + oy, (23)

where A(¢), B(¢) and C(&) are the unknowns to be solved and aq, by, ¢y are real constants, which will be
determined from the far-field loading conditions. A simple calculation leads to the stress, electric displace-
ment and magnetic induction expressions:
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o — * | (cas — ersm — hysn)Vk exp(—VkEy) .

o2 é{ enB(E) + hsC(@exp(—ey) [ T -
b2 " B + By C(&)] exp(~&) cos(Ex) dE + D, (25)
B, =2 / E1BLBE) + 711 C(E)] exp(—Ev) cos(Ex) dé + By, (26)

The constants ag, by and ¢, can be obtained by considering the far-field loading conditions as follows:

-1

ay ca  ers  hys Py
by | = es —iu —Bn Dy |, (27)
Co his —PBu  —n By

The mechanical conditions for the crack case are:

Uzy(x,O) =0, (0 <x< C),

w(x,0) =0, (c<x<o0). (28)

The electrical and magnetic conditions for the permeable crack case can be expressed as (Parton and
Kudryurtsev, 1998; Gao et al., 2003):

D,(x,07) = D,(x,07), E.(x,0") =E.(x,07), (0<x<e), (20)
¢(x,0) =0, (¢ < x < ),
B,(x,07) = B,(x,07), H.(x,07) =H.(x,07), 0<x<ec)

P(x,0) =0, (c<x<o0). (30)

The stresses, the strains, the electric field intensities, the electric displacements, the magnetic field inten-
sities and the magnetic inductions can be obtained by making use of Eqgs. (4), (12), (24)—(26).

Satisfaction of the three mixed boundary conditions (28)—(30) leads to the simultaneous dual integral
equations of the following form:

Po _& x<c
/ (e) cos(x)de = [6’44\/];-1- (1 = Vk)(ersm +h15’1)] -2 (Osx<a) .
/0 A(E)cos(éx)dE =0, (x = o), (32)
B(&) = mA(2), C(&) =nA(Q). (33)

Obviously, we can get the analytical solutions of the simultaneous dual integral equations above men-
tioned as (Fan, 1978):

A =Re i), BEQ =ma@), €@ =nd() (34)

in which J;() denotes the first order Bessel function of the first kind.
Substituting Eq. (34) into Egs. (4), (12), (21)~(23) and following the procedure given by Fan (1978),
we arrive at:
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Zy

. . Z
O-zy+10zx: (044—615m—h15n)R1{\/];Re \/ﬁ— 1 +lIm \/Tj‘| }
- - -
+ (615m+h15}1)R1 —1 —|—P0,
lVZ2—c2 ]
Dy+li:—(/111m+ﬁ”n)R1 z 1 +D0,
lVz2 — 2
: [z 1
B)’ +IBX = _(ﬁllm—’—/ylln)Rl _m_ 1_ +BOa

2829

(35)

where Re and Im denote the real and imaginary parts of a complex variable respectively, z = x + iy,

Z, :x+i\/lzy, andi=+v-—1.

4. Field intensity factors

Evaluating the solution (35) near the right crack tip and extend the traditional concept of stress intensity
factor to other field variables, we can get the singular parts of the stresses, the electric displacements and the

magnetic inductions as

K'(v)

T n
K" (v)
vV 2}"1

Ox = —

B :KB(U) cos O B, = —KB(U) sin ﬂ)

v \2) BT )

g= Vlle%s + lllh%s — 2By e1shis
‘344(111711 - ﬁ%l)\/%+ (y“e%s + )“llh%s - 2/311@15h15)(‘/]€_ 1) )

(xy)

0, 0 01 X

-C 0 c

Fig. 2. Coordinates used to express solution.
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where the polar coordinates ry, 0; and 7, 0, are coordinates defined in Fig. 2, they are

r = (xfc)ery27 0, = tan™! P ),
—c
. (40)
F=1/(x—c) +k? 01—tan‘l<ﬁy>

X—cC

and K”(v), K”(v) and K®(v) are the dynamic stress intensity factor (DSIF), the dynamic electric displace-
ment intensity factor (DEDIF), and the dynamic magnetic induction intensity factor (DMIIF), respectively;
these field intensity factors can be defined as

K'(v) = lim V2(x = ¢)o.,(x,0) = Pyy/c,

KP(v) = hm 2(x — ¢)Dy(x,0) = e;sRi/c

)
_ ers(inyn — Bi)Pov/e
ca(un = BLOVE+ (muels + anhis = 2Bpeshs) (Vi = 1) (41)
K% (v) = lim \/2(x — ¢)B,(x,0) = hisRiv/c

_ his(Anvn — Biy)Pov/e
cas(Znyn — BV + (uels + Anhis — 2Beishis) (Vi — 1)

For this particular problem, the stresses, electric displacements and magnetic inductions at the crack tip
show the inverse square root singularities. It is clear that the DEDIF and DMIIF under the permeable
crack condition are dependent on the speed of the moving crack and material constants.

Using the polar coordinate system (ry, 0;) defined near by the crack tip, the field intensity factors along
the orientation 0, can be obtained as

K'(v,00) = KT@)F(01), K(v,01) = K®(v) cos (93}

K%(v,0,) = K®(v) cos <621>,

0 1 0 0
F(0)) = (1+¢)2(0,) |cos(6;) cos <—1> + — sin(0;) sin (—1>] —gcos (=),
2) Vk 2 (2) @)

r 1

— = , tan Vk tan

i /(1 —k)cos () + k ()= ()

To illustrate the influence of the velocity of the moving crack on the DEDIF and DMIIF, a Mach number
as the ratio of the velocity to the magnetoelectroelastic shear wave speed, M = v/C, is introduced. It is ob-
served that from Eq. (41) that the magnitudes of K”(v) and K®(v), in the case of permeable condition will
become infinity when

M=M= $C44(/111“/11 [_ ﬁ%l) [‘344(/1117’11 ﬁll) "‘2(/11@15 + /111 15 2/311615}115)}

(42)

(44)
044(/111))11 ﬁu) + Vllels + ’Lllhls - 2ﬁ11@15h15]

From Eq. (43), it can be seen that the function F(6;) is independent of the crack length 2¢. The crack length
does not affect the distribution of the DSIF on the circumference. Therefore, analyzing the function F(6;)
would provide a good model to understand the crack propagation orientation.
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In the case of v =0, f§;; =0, and /5 = 0, our results are exactly reduced to the static piezoelectric solu-
tions, and are agreed with Zhang and Tong (1996). This shows that our solutions are correct and universal.

5. Discussions

We will consider a transversely isotropic material exhibiting full coupling between elastic, electric and
magnetic fields, with unique axis along x3 direction. The independent material constants are the elastic con-
stants, piezoelectric constants, piezomagnetic constants, dielectric constants, magnetic constants and mag-
netoelectric constants. This is the general situation, and for a particular material, some of the coupling
coefficients may be zero. The material constants we used are given by Li (2000) as follows:

cay =453 x 10" (N/m?), e5=11.6 (C/m?), &5 =550 N/Am,
A1 =0.8x 107" (C?/Nm?), 7y, =—-59x107* (Ns?/C?), (45)
By =0.5x 107" (Ns/VC).

5 T T T T T
45L | — M=0 i
----- =01
4 —- M=0.14 .
—-- M=0.18
35 — M=0.2 p

~ 25p-

D

-

15+
el D T
05t
DD 2;3 4;] EIEI Bi] 1 EIIEI 1 éU 1 llllj 1 EIEI 180
6, (degrees)
Fig. 3. F(0,) versus 0, when 0 < M < M.
Table 1
Values of F(0,) against M and maximum value F(0y)
M 0,
0° 30° 60° 90° 120° F(0y)

0.1 (0, = 53°) 1.0000 1.0155 1.0192 0.9580 0.7661 1.0209
0.12 (6, = 76°) 1.0000 1.0391 1.1124 1.1111 0.9285 1.1288
0.14 (0, = 88°) 1.0000 1.0813 1.2551 1.3462 1.1779 1.3467
0.16 (6, = 96°) 1.0000 1.1505 1.4901 1.7339 1.5891 1.7431
0.18 (0, = 102°) 1.0000 1.2803 1.9317 2.4642 2.3636 2.5205
0.19 (0, = 104°) 1.0000 1.3979 2.3326 3.1280 3.0677 3.2369
0.20 (0, = 105°) 1.0000 1.6015 3.0275 4.2795 4.2889 4.4860
0.21 (0, = 107°) 1.0000 2.0381 4.5186 6.7516 6.9108 7.1766
0.22 (0, = 108°) 1.0000 3.6332 9.9688 15.6589 16.4979 17.0289

0.225 (0p = 109°) 1.0000 9.1235 28.7313 46.9146 49.5066 50.9679
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By analyzing the extreme value of function F(0;), we find the Mach number exists a critical value when
M. =0.087. While M < M, and 0° < 0, < 180°, F(0;) monotonically decreases with increase of 0, see
Fig. 3. The maximum value of the DSIF K”(v,0;) occurs at the crack axis 0; = 0°, this means that the crack
has a tendency to propagate along its original plane when the criterion of the maximum tensile stress is
used.

For the case of M. <M < M, and 0° < 0; < 180°, F(0;) increases with increase of 0 at first and then
decreases after it reaches a certain peak value. It is shown that the orientation of the maximum DSIF makes
a branch angle of 0, with the crack axis, and the higher crack propagation speed, the bigger branch angle.
This conclusion will be in agreement with that obtained by Hou et al. (2001), Kwon and Lee (2001) and
Kwon et al. (2002) when our solution reduce to piezoelectric material case.

When M varies from 0.21 to 0.225 (while ¢ — co, M — M,;=0.2276), 0,, approximately ranges from
107° to 109°. Some results are listed in Table 1.

F(6,)

— M=045

7 1 1 1 1 1 L 1 1
0 20 40 60 80 100 120 140 160 180

0, (degrees)

Fig. 4. F(6,) versus 6; when M, < M < M.
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Fig. 5. F(0,) versus 0; when M, < M < 1.
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For the case of M > M, and 0° < 0; < 180°, the Mach number also exists a critical value when
M, = 0.476. From Fig. 4, it can be seen that the maximum magnitudes of F(0;) is greater than 1 at an angle
0, # 0° when M, < M < M,, this means that the crack will deviate from its original plane. While at higher
crack velocity, the maximum magnitudes of F(6;) is always 1 at angle 6; = 0° when M., < M <1, this
means that the crack will propagate along its original plane, see Fig. 5.

Fig. 6 shows the variations of the normalized DEDIF K" = 10°K”(v)/(Py\/c) versus M. The influ-
ence of the speed of the moving crack on the normalized DMIIF K% = 10"K®(v)/(Py\/c) was shown
in Fig. 7.

For the case that 0 < M < M, the DEDIF and the DMIIF gradually enlarge with the increase of crack
speed, and will increase rapidly and verge on positive infinity when M verges on M.

My

0 0.1 n2 03 04 05 06 07 08 09 1
M

Fig. 6. The normalized DEDIF K”' = 10°K”(v)/(Py+/c)versus M.

05+ H ht
My
15 1 1 1 1 1 1 1 1 L

Fig. 7. The normalized DMIIF K*" = 10’K? () /(Py+/c) versus M.
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For the case where M;< M < 1, the DEDIF and the DMIIF gradually enlarge from —oco with the in-
crease of crack speed to certain values of K” (1) and K* (1) respectively. The values of K” (1) and
K% (1) are

10715 (211 — Br)

= 5 - 7 -
2By e1shis — ppiels — Auhis

_ 109615()»11“/11 - ﬁi)
2By1e1shis — yels — Anhis’

K" (1)

K* (1) (46)

6. Conclusions

The magnetoelectroelastic problem of a constant moving crack in an orthotropic magnetoelectroelastic
material under the combined anti-plane mechanical shear and in-plane electrical and magnetic loadings has
been analyzed for permeable crack condition by integral transform approach. Closed-form solution of the
field variables and the field intensity factors are derived. The stresses, electric displacements and magnetic
inductions at the crack tip exhibit the inverse square root singularities. The DEDIF and DMIIF under the
permeable crack condition are dependent on the speed of the moving crack and material constants. When
the velocity of the moving crack is less than M., or higher than M,,, the crack will propagate along its ori-
ginal plane; while in the range of M. < M < M,,, the propagation of the crack possibly brings about the
branch phenomena in magnetoelectroelastic media.
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