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Abstract

Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under
the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane
mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material.
Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field
intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic
inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on
the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor
(DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When
the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the
range of Mc1 <M <Mc2, the propagation of the crack possibly brings about the branch phenomena in magnetoelec-
troelastic media.
� 2004 Published by Elsevier Ltd.
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1. Introduction

Fibrous and laminated composites made of piezoelectric–piezomagnetic materials exhibit magnetoelec-
tric effect that is not present in single-phase piezoelectric or piezomagnetic materials, and have found
increasingly wide engineering applications, particularly in the aerospace and automotive industries. Numer-
ous investigators have carried out studies on the properties of piezoelectric/piezomagnetic composites in
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recent years (see e.g., Nan, 1994; Huang et al., 2000; Li, 2000; Pan, 2001; Wang and Shen, 2002; Wang and
Zhong, 2003). In particular, the damage tolerance and reliability for the composites have been matters of
concern, and there is a growing interest among researchers in solving fracture mechanic problems in media
possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects, this is, magnetoelectroelastic
effects. Recently, Liu et al. (2001) investigated magnetoelectroelastic materials involving a cavity or a crack
by including the electric field effects. Gao et al. (2003) presented an exact treatment on the crack problems
in a magnetoelectroelastic solid subjected to far-field loadings. Song and Sih (2003) analyzed the crack ini-
tiation behavior in magnetoelectroelastic composite under in-plane deformation. The anti-plane crack
problems in magnetoelectroelastic materials have been considered by Spyropoulos et al. (2003) and Wang
and Mai (2004). To the best of the authors� knowledge, the problem of a moving crack in magnetoelectro-
elastic materials has not been resolved.

The objective of this paper is to seek the solution to the Yoffe-type moving crack problem in a magneto-
electroelastic material under anti-plane mechanical shear and in-plane electrical and magnetic loadings.
Fourier transforms are used to reduce the problem to the solution of dual integral equations. The solution
of the dual integral equations is then expressed analytically. Closed-form expressions for crack-tip fields
and field intensity factors are obtained. The results indicate that the crack moving velocity will exert a
significant effect on the crack-tip fields.
2. Basic equations for magnetoelectroelastic media

We consider a linear magnetoelectroelastic solid and denote the rectangular coordinates of a point by
xj(j = 1,2,3). Dynamic equilibrium equations are given as
rij;i þ fi ¼ q
o
2uj

ot2
; Di;i � fe ¼ 0; Bi;i � fm ¼ 0; ð1Þ
where rij, Di and Bi are components of stress, electrical displacement and magnetic induction, respectively;
fj, fe and fm are the body force, electric charge density and electric current density, respectively; q is the mass
density of the magnetoelectroelastic material; a comma followed by i(i = 1,2,3) denotes partial differenti-
ation with respect to the coordinate xi, and the usual summation convention over repeated indices is
applied. Constitutive equations can be written as
rij ¼ cijkseks � esijEs � hsijHs;

Di ¼ eikseks þ kisEs þ bisHs;

Bi ¼ hikseks þ bisEs þ cisHs;

ð2Þ
where eks, Es and Hs are components of strain, electric field and magnetic field, respectively; cijks, eiks, hiks
and bis are elastic, piezoelectric, piezomagnetic and electromagnetic constants, respectively; kis and cis are
dielectric permittivities and magnetic permeabilities, respectively. The following reciprocal symmetries
hold:
cijks ¼ cjiks ¼ cijsk ¼ cksij; esij ¼ esji;

hsij ¼ hsji; bij ¼ bji; kij ¼ kji; cij ¼ cji:
ð3Þ
Gradient equations are
eij ¼
1

2
ðui;j þ uj;iÞ; Ei ¼ �/;i; Hi ¼ �u;i; ð4Þ
where ui is the displacement vector, / and uare electric potential and magnetic potential, respectively.
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For a special case of a transversely isotropic magnetoelectroelastic medium with x3 as a symmetry axis,
the constitutive equations (2) take the form as follows (Pan, 2001):
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where c66 = (c11 � c12)/2. The governing equations simplify considerably if we consider only the out-of-
plane displacement, the in-plane electric fields and in-plane magnetic fields, i.e.,
u1 ¼ u2 ¼ 0; u3 ¼ wðx; yÞ; ð8Þ

E1 ¼ Exðx; yÞ; E2 ¼ Eyðx; yÞ; E3 ¼ 0; ð9Þ

H 1 ¼ Hxðx; yÞ; H 2 ¼ Hyðx; yÞ; H 3 ¼ 0: ð10Þ
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In this case, if there is no body force, electric charge density and electric current density, the governing
equations (1) simplify to
c44r2wþ e15r2/ þ h15r2u ¼ q
o2w
ot2

;

e15r2w� k11r2/ � b11r2u ¼ 0;

h15r2w� b11r2/ � c11r2u ¼ 0;

ð11Þ
where r2 ¼ o2

ox2 þ o2

oy2 is the two-dimensional Laplace operator in the variables x and y, and the constitutive

relations (2), (5)–(7) become
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Introducing two new functions U and W as
U ¼ / þ m � w; W ¼ u þ n � w; ð13Þ
where
m ¼ b11h15 � c11e15
k11c11 � b2

11

; n ¼ b11e15 � k11h15
k11c11 � b2

11

: ð14Þ
Eq. (11) become
r2w ¼ 1

C2

o2w
ot2

; r2U ¼ 0; r2W ¼ 0; ð15Þ
where
C ¼
ffiffiffi
l
q

r
; l ¼ c44 þ

c11e
2
15 þ k11h

2
15 � 2b11e15h15

k11c11 � b2
11

; ð16Þ
and C, l and q are the speed of the magnetoelectroelastic shear wave, the magnetoelectroelastic constant,
and the material density, respectively.
3. Problem statement and method of solution

Consider a Griffith crack of length 2c moving at constant speed v in an infinite magnetoelectroelastic
material, which is subjected to far-field mechanical, electrical and magnetic loads as shown in Fig. 1. This
type of crack is the so-called Yoffe-type moving crack (Yoffe, 1951; Chen and Yu, 1997; Chen et al., 1998;
Hou et al., 2001; Kwon and Lee, 2001, 2003; Kwon et al., 2002; Kwon, 2004).

For convenience, let a coordinate system (x,y,z) be attached to the moving crack and when t = 0 it coin-
cides with the fixed coordinate system (X,Y,Z). Since the problem is in a steady state, the Galilean trans-
formation can be introduced, i.e.
x ¼ X � vt; y ¼ Y ; z ¼ Z: ð17Þ
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Fig. 1. A crack moving in magnetoelectroelastic material under far-field mechanical, electrical and magnetic loads.
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With reference to the moving coordinates system, Eq. (15) become independent of the time variable t and
may be rewritten as
k
o
2wðx; yÞ
ox2

þ o
2wðx; yÞ
oy2

¼ 0; r2Uðx; yÞ ¼ 0; r2Wðx; yÞ ¼ 0; ð18Þ
where
k ¼ 1� ðv=CÞ2: ð19Þ
The poled magnetoelectroelastic medium is thick enough in the z-direction to allow a state of anti-plane
shear, and the crack is situated along the plane (�c < x < c, y = 0). Due to the assumed symmetry in geo-
metry and loading, it is sufficient to consider the problem for 0 6 x <1, 0 6 y 61 only.

We will consider the boundary conditions at infinity as
ryz ¼ P 0; Dy ¼ D0; By ¼ B0 ðx2 þ y2 ! 1Þ: ð20Þ
Fourier transforms are applied to Eq. (18), and by using the conditions in Eq. (13), the results can be
obtained as follows:
wðx; yÞ ¼ 2

Z 1

0

AðnÞ expð�
ffiffiffi
k

p
nyÞ cosðnxÞdn þ a0y; ð21Þ

/ðx; yÞ ¼ 2

Z 1

0

½BðnÞ expð�nyÞ � mAðnÞ expð�
ffiffiffi
k

p
nyÞ� cosðnxÞdn þ b0y; ð22Þ

uðx; yÞ ¼ 2

Z 1

0

½CðnÞ expð�nyÞ � nAðnÞ expð�
ffiffiffi
k

p
nyÞ� cosðnxÞdn þ c0y; ð23Þ
where A(n), B(n) and C(n) are the unknowns to be solved and a0, b0, c0 are real constants, which will be
determined from the far-field loading conditions. A simple calculation leads to the stress, electric displace-
ment and magnetic induction expressions:
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rzy ¼ �2
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k
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þ½e15BðnÞ þ h15CðnÞ� expð�nyÞ

( )
cosðnxÞdn þ P 0; ð24Þ
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The constants a0, b0 and c0 can be obtained by considering the far-field loading conditions as follows:
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The mechanical conditions for the crack case are:
rzyðx; 0Þ ¼ 0; ð0 6 x < cÞ;
wðx; 0Þ ¼ 0; ðc 6 x < 1Þ:

ð28Þ
The electrical and magnetic conditions for the permeable crack case can be expressed as (Parton and
Kudryurtsev, 1998; Gao et al., 2003):
Dyðx; 0þÞ ¼ Dyðx; 0�Þ; Exðx; 0þÞ ¼ Exðx; 0�Þ; ð0 6 x < cÞ;
/ðx; 0Þ ¼ 0; ðc 6 x < 1Þ;

ð29Þ

Byðx; 0þÞ ¼ Byðx; 0�Þ; Hxðx; 0þÞ ¼ Hxðx; 0�Þ; ð0 6 x < cÞ
uðx; 0Þ ¼ 0; ðc 6 x < 1Þ:

ð30Þ
The stresses, the strains, the electric field intensities, the electric displacements, the magnetic field inten-
sities and the magnetic inductions can be obtained by making use of Eqs. (4), (12), (24)–(26).

Satisfaction of the three mixed boundary conditions (28)–(30) leads to the simultaneous dual integral
equations of the following form:
Z 1
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BðnÞ ¼ mAðnÞ; CðnÞ ¼ nAðnÞ: ð33Þ

Obviously, we can get the analytical solutions of the simultaneous dual integral equations above men-

tioned as (Fan, 1978):
AðnÞ ¼ R1

2
cn�1J 1ðncÞ; BðnÞ ¼ mAðnÞ; CðnÞ ¼ nAðnÞ; ð34Þ
in which J1( ) denotes the first order Bessel function of the first kind.
Substituting Eq. (34) into Eqs. (4), (12), (21)–(23) and following the procedure given by Fan (1978),

we arrive at:
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rzy þ irzx ¼ ðc44 � e15m� h15nÞR1
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where Re and Im denote the real and imaginary parts of a complex variable respectively, z = x + iy,
zv ¼ xþ i

ffiffiffi
k

p
y, and i ¼

ffiffiffiffiffiffiffi
�1

p
.

4. Field intensity factors

Evaluating the solution (35) near the right crack tip and extend the traditional concept of stress intensity
factor to other field variables, we can get the singular parts of the stresses, the electric displacements and the
magnetic inductions as
rzy ¼
KT ðvÞffiffiffiffiffiffiffi
2r1

p ð1þ qÞ
ffiffiffiffi
r1
~r1

r
cos

~h1

2

 !
� q cos

h1

2

� �" #
;

rzx ¼ �KT ðvÞffiffiffiffiffiffiffi
2r1

p ð1þ qÞ
ffiffiffiffiffiffiffi
r1
k~r1

r
sin

~h1

2

 !
� q sin

h1

2

� �" #
;

ð36Þ

Dy ¼
KDðvÞffiffiffiffiffiffiffi

2r1
p cos

h1

2

� �
; Dx ¼ �KDðvÞffiffiffiffiffiffiffi

2r1
p sin

h1

2

� �
; ð37Þ

By ¼
KBðvÞffiffiffiffiffiffiffi
2r1

p cos
h1

2

� �
; Bx ¼ �KBðvÞffiffiffiffiffiffiffi

2r1
p sin

h1

2

� �
; ð38Þ

q ¼ c11e
2
15 þ k11h

2
15 � 2b11e15h15

c44 k11c11 � b2
11


 � ffiffiffi
k

p
þ c11e

2
15 þ k11h

2
15 � 2b11e15h15


 � ffiffiffi
k

p
� 1


 � ; ð39Þ
 2  

r  2  

r  r  1  

  1 

(x,y)
y  

x  

-  c  c  0 

θ θ θ

Fig. 2. Coordinates used to express solution.
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where the polar coordinates r1, h1 and ~r1, ~h1 are coordinates defined in Fig. 2, they are
r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� cÞ2 þ y2

q
; h1 ¼ tan�1 y

x� c

� �
;

~r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� cÞ2 þ ky2

q
; ~h1 ¼ tan�1

ffiffiffi
k

p
y

x� c

 ! ð40Þ
and KT(v), KD(v) and KB(v) are the dynamic stress intensity factor (DSIF), the dynamic electric displace-
ment intensity factor (DEDIF), and the dynamic magnetic induction intensity factor (DMIIF), respectively;
these field intensity factors can be defined as
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ð41Þ
For this particular problem, the stresses, electric displacements and magnetic inductions at the crack tip
show the inverse square root singularities. It is clear that the DEDIF and DMIIF under the permeable
crack condition are dependent on the speed of the moving crack and material constants.

Using the polar coordinate system (r1,h1) defined near by the crack tip, the field intensity factors along
the orientation h1 can be obtained as
KT ðv; h1Þ ¼ KT ðvÞF ðh1Þ; KDðv; h1Þ ¼ KDðvÞ cos h1

2

� �
;

KBðv; h1Þ ¼ KBðvÞ cos h1

2

� �
;

ð42Þ
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To illustrate the influence of the velocity of the moving crack on the DEDIF and DMIIF, a Mach number
as the ratio of the velocity to the magnetoelectroelastic shear wave speed,M = v/C, is introduced. It is ob-
served that from Eq. (41) that the magnitudes of KD(v) and KB(v), in the case of permeable condition will
become infinity when
M ¼ Md ¼
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From Eq. (43), it can be seen that the function F(h1) is independent of the crack length 2c. The crack length
does not affect the distribution of the DSIF on the circumference. Therefore, analyzing the function F(h1)
would provide a good model to understand the crack propagation orientation.
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In the case of v = 0, b11 = 0, and h15 = 0, our results are exactly reduced to the static piezoelectric solu-
tions, and are agreed with Zhang and Tong (1996). This shows that our solutions are correct and universal.
5. Discussions

We will consider a transversely isotropic material exhibiting full coupling between elastic, electric and
magnetic fields, with unique axis along x3 direction. The independent material constants are the elastic con-
stants, piezoelectric constants, piezomagnetic constants, dielectric constants, magnetic constants and mag-
netoelectric constants. This is the general situation, and for a particular material, some of the coupling
coefficients may be zero. The material constants we used are given by Li (2000) as follows:
Table
Values

M

0.1 (hb
0.12 (h
0.14 (h
0.16 (h
0.18 (h
0.19 (h
0.20 (h
0.21 (h
0.22 (h
0.225 (
c44 ¼ 4:53
 1010 ðN=m2Þ; e15 ¼ 11:6 ðC=m2Þ; h15 ¼ 550 N=Am;

k11 ¼ 0:8
 10�10 ðC2=Nm2Þ; c11 ¼ �5:9
 10�4 ðNs2=C2Þ;
b11 ¼ 0:5
 10�11 ðNs=VCÞ:

ð45Þ
Fig. 3. F(h1) versus h1 when 0 6M <Md.

1
of F(h1) against M and maximum value F(hb)

h1

0� 30� 60� 90� 120� F(hb)

= 53�) 1.0000 1.0155 1.0192 0.9580 0.7661 1.0209

b = 76�) 1.0000 1.0391 1.1124 1.1111 0.9285 1.1288

b = 88�) 1.0000 1.0813 1.2551 1.3462 1.1779 1.3467

b = 96�) 1.0000 1.1505 1.4901 1.7339 1.5891 1.7431

b = 102�) 1.0000 1.2803 1.9317 2.4642 2.3636 2.5205

b = 104�) 1.0000 1.3979 2.3326 3.1280 3.0677 3.2369

b = 105�) 1.0000 1.6015 3.0275 4.2795 4.2889 4.4860

b = 107�) 1.0000 2.0381 4.5186 6.7516 6.9108 7.1766

b = 108�) 1.0000 3.6332 9.9688 15.6589 16.4979 17.0289
hb = 109�) 1.0000 9.1235 28.7313 46.9146 49.5066 50.9679
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By analyzing the extreme value of function F(h1), we find the Mach number exists a critical value when
Mc1 = 0.087. While M 6 Mc1 and 0� 6 h1 6 180�, F(h1) monotonically decreases with increase of h1, see
Fig. 3. The maximum value of the DSIF KT(v,h1) occurs at the crack axis h1 = 0�, this means that the crack
has a tendency to propagate along its original plane when the criterion of the maximum tensile stress is
used.

For the case of Mc1 <M <Md and 0� 6 h1 6 180�, F(h1) increases with increase of h1 at first and then
decreases after it reaches a certain peak value. It is shown that the orientation of the maximum DSIF makes
a branch angle of hb with the crack axis, and the higher crack propagation speed, the bigger branch angle.
This conclusion will be in agreement with that obtained by Hou et al. (2001), Kwon and Lee (2001) and
Kwon et al. (2002) when our solution reduce to piezoelectric material case.

When M varies from 0.21 to 0.225 (while q! 1, M!Md = 0.2276), hb approximately ranges from
107� to 109�. Some results are listed in Table 1.
Fig. 4. F(h1) versus h1 when Md <M <Mc2.

Fig. 5. F(h1) versus h1 when Mc2 <M < 1.
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For the case of M >Md and 0� 6 h1 6 180�, the Mach number also exists a critical value when
Mc2 = 0.476. From Fig. 4, it can be seen that the maximum magnitudes of F(h1) is greater than 1 at an angle
h1 5 0� whenMd <M <Mc2, this means that the crack will deviate from its original plane. While at higher
crack velocity, the maximum magnitudes of F(h1) is always 1 at angle h1 = 0� when Mc2 <M < 1, this
means that the crack will propagate along its original plane, see Fig. 5.

Fig. 6 shows the variations of the normalized DEDIF KD� ¼ 109KDðvÞ=ðP 0

ffiffiffi
c

p Þ versus M. The influ-
ence of the speed of the moving crack on the normalized DMIIF KB� ¼ 107KBðvÞ=ðP 0

ffiffiffi
c

p Þ was shown
in Fig. 7.

For the case that 0 <M <Md, the DEDIF and the DMIIF gradually enlarge with the increase of crack
speed, and will increase rapidly and verge on positive infinity when M verges on Md.
Fig. 6. The normalized DEDIF KD� ¼ 109KDðvÞ=ðP 0

ffiffiffi
c

p
Þversus M.

Fig. 7. The normalized DMIIF KB� ¼ 107KBðvÞ=ðP 0

ffiffiffi
c

p
Þ versus M.
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For the case where Md <M 6 1, the DEDIF and the DMIIF gradually enlarge from �1 with the in-
crease of crack speed to certain values of KD� ð1Þ and KB� ð1Þ respectively. The values of KD� ð1Þ and
KB� ð1Þ are
KD� ð1Þ ¼ 109e15ðk11c11 � b2
11Þ

2b11e15h15 � c11e
2
15 � k11h

2
15

; KB� ð1Þ ¼ 107h15ðk11c11 � b2
11Þ

2b11e15h15 � c11e
2
15 � k11h

2
15

: ð46Þ
6. Conclusions

The magnetoelectroelastic problem of a constant moving crack in an orthotropic magnetoelectroelastic
material under the combined anti-plane mechanical shear and in-plane electrical and magnetic loadings has
been analyzed for permeable crack condition by integral transform approach. Closed-form solution of the
field variables and the field intensity factors are derived. The stresses, electric displacements and magnetic
inductions at the crack tip exhibit the inverse square root singularities. The DEDIF and DMIIF under the
permeable crack condition are dependent on the speed of the moving crack and material constants. When
the velocity of the moving crack is less thanMc1 or higher thanMc2, the crack will propagate along its ori-
ginal plane; while in the range of Mc1 <M <Mc2, the propagation of the crack possibly brings about the
branch phenomena in magnetoelectroelastic media.
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